
UNIX Basics
by Peter Collinson, Hillside Systems

24 SunExpert Magazine ■ June 1998

DE
NI

SE
 O

RT
AK

AL
ES

make: Mastermind of the Update
II

t was interesting to read Rich Morin’s
I/Opener article “Page Processing
in Perl” in SunExpert (March 1998,

Page 43). It turns out that I have reached
a similar conclusion about generating
Web pages. Like Rich, I’ve also written a
processor routine in Perl that takes page
descriptions and spits out pages.

Perhaps four years back, I realized
that each of my Web pages has a large
chunk of HTML that remains essential-
ly the same across any particular set of
pages. The constant part usually pro-
vides a consistent look and feel across a
whole Web site, or part of one. I now
create pages by writing a small Perl pro-
gram that fills in a template taken from
a file, where the variable sections in the
template are supplied from the Perl
code. Creating these little Perl program
description files is easy, because all you
supply is the information that differs
on each page. Also, if I want to make
global changes to the site, I can alter the
template file and recompile the pages. I
can change the site without the massive

time-consuming, error-prone task of
editing each page individually.

My processor is designed to be a sim-
ple classical macro processor, although
it’s not that elegant and only does a
bare-bones job. The processor scans the
source file for a name (enclosed in dou-
ble braces, {{CONTENT}} , for example)
and replaces any embraced name it finds
with contents of a variable in the Perl
program (taken from an associative
array, for Perl-literate readers). There are
also simple macro definitions and con-
ditional facilities.

I seem to be using this beast on every
Web site I design. It can compile static
pages from simple short Perl programs
that are applied to a template file, pro-
vide dynamic pages from CGI scripts in
response to input from forms and add
addressee information and other mate-
rial into stock email messages.

However, the point of this article
is not to discuss the ins and outs of
converting Perl programs into HTML
documents, but to look at the way I’ve

automated the compilation system that
uses it. I want to ensure that if I change
a page description, I’ll run the appro-
priate programs on the appropriate files
to generate the updated pages. The up-
date task is masterminded by a standard
UNIX tool: make.

I’ve discussed make in this magazine
before. I wrote two consecutive articles,
“Make: Parts I and II,” February 1992,
Page 34, and March 1992, Page 26.
This was back in the dim, distant past
for many readers, so I make no apology
for revisiting some of the details of
make again–although this article does
contain information that was not dis-
cussed previously.

make: The Basics
The notion that underlies make is

easy to understand. Many files on a
UNIX system are created by applying
a program to a set of source files. It’s a
simple observation that the modifica-
tion time stored with each generated file
must be later than the time stored for

each of its component source files. In make-speak, each gen-
erated file depends on the set of source files.

If we discover that the modification time on one of the
source files is later than that on a generated file, then the gen-
erated file is out-of-date and needs to be updated. The make

command is fed a user-generated control file that provides
a specification of how a particular generated file, the target,
depends on a set of source files. The control file contains a
rule, or a set of rules, used to convert each source file into
a target file. Unless it is given a specific file name, the make

command first looks for a control file called makefile , then
for a file called Makefile . You can choose which flavor you
prefer. Most people these days use the capitalized name, and
many versions of make now complain if both files are present
in the same directory. To avoid confusion, I’ll call one of
these files a “makefile.”

The makefile will contain several definitions of the form

target: dependency list

<tab> rule

The syntax tells make that the particular target depends on a
list of files, and to create the target the rule should be execut-
ed. In most versions of make there must be a tab character
before the rule, and I’ve emphasized that here, I’ll be showing
white space in the examples that follow. The rule is simply a
shell command that is run by make. It is assumed to create
the target. In general, if the command fails returning an error
status, then make will spot this and terminate any further
execution.

Actually, the rule section can contain several commands,
appearing on several lines. Each command is run in a separate
shell, and this can catch you out sometimes.

Let’s look at a specific example. The easiest way to show
you what happens is to pick up a programming task, but the
strategy can be applied to many nonprogramming jobs, so
don’t think this article is aimed just at programmers.

If we are compiling a C program from a source file called
hello.c , then we might create a makefile that contains

hello: hello.c

cc -o hello -O hello.c

The target is a compiled program called hello that depends
on the source file hello.c . If the modification time on
hello.c is later than that on hello , then we will invoke
the rule. The C compiler is called and told to place its out-
put into a file called hello (the -o option). We’ve also ask-
ed for the compiler to run the optimizer as part of its work
(the -O option).

I should emphasize that if the target file hello was created
more recently than hello.c , then the rule is not run by make.
However, if we omit the dependency, starting the line with

hello:

then the rule will always be run. The trick with constructing

makefiles is to get the dependencies right.
The example above is a no-brainer. There is no huge win

when compiling a single file, except that you can type make

as a reflex action and not have to worry about how the pro-
gram is compiled. Actually, the ability to just type make can
be a big win, saving a lot of time in understanding just how
the command is compiled.

However, the real power of the make command is appar-
ent when there are several source files to be compiled into the
final target. For example,

hello: a.o b.o

cc -o hello a.o b.o

a.o: a.c header.h

cc -c -O a.c

b.o: b.c header.h

cc -c -O b.c

The file starts with the final target, the hello program that
depends on two compiled modules, a.o and b.o . We place
the final target first because by default make will create the
first target that it finds in the makefile. So when we type
make, a tree of dependencies will be built, and that tree is
then traversed looking for work to be done.

If the targets a.o and b.o are not current, they are each
created from their own rules. This will result in separate runs
of the C compiler that is given the -c switch telling it to create
a compiled module. Notice that each compilation depends on
the header.h file. If I change the header file, then both a.c

and b.c will be recompiled. When a.o and b.o exist and are
more recent than the current version of the hello file, then
the rule to create the final target will be executed.

Incidentally, I mentioned that make could be given targets
to work on, so we can type

$ make a.o

to run the system to create that particular intermediate step.
This feature is perhaps more useful if you have several pro-
grams to be compiled in the same makefile:

all: prog1 prog2

prog1: prog1.o proghdr.h

cc -c -O prog1.c

prog2: prog2.o proghdr.h

cc -c -O prog2.c

and so on

Now we can type make to create both programs and select one
or the other by supplying a specific request on the command
line. This makefile also demonstrates that the rule section can
be empty.

In many makefiles, you’ll find a bunch of ad-hoc targets

26 SunExpert Magazine ■ June 1998

UNIX Basics

UNIX Basics
that perform useful functions:

clean:

-rm *.o core hello

The clean target is used to ensure that created files in the
directory are removed. The hyphen preceeding the rm com-
mand is a small bit of magic. Normally rm will complain and
return a failure status when it is given a file to delete that doesn’t
exist. The nonzero status will cause make to terminate because
one of its children failed. We can tell make that we can tolerate
failure by placing a hyphen before the command. Quite often,
I’ll add the -f flag to an rm command in a makefile because
the -f flag changes the default behavior; the command doesn’t
complain and die if a file doesn’t exist.

Other common targets in makefiles are: install to
place the final binary into public use in the file system; dist

to create a distribution, perhaps using the tar command
to create a file that can be transported elsewhere; print to
print the sources; and depend to create a dependency set
that is appended to the makefile.

More Syntax
Well, all the above concentrates somewhat on program-

ming, but we can use make for any purpose where the modifi-
cation time of files is important. For example, let’s say we are
working on several important files in a directory and want to
create a checkpoint copy from time to time. We create a sub-
directory called checkpoint and write a makefile like this:

FILES= file1 file2 file3 file4 file5

check: $(FILES)

cp $? checkpoint

touch check

We type make and only the files that we have altered since the
last run will be copied into the checkpoint directory. I’ve
introduced some new things into this makefile. First, you can
define macro replacements by using the NAME=list statement.
When make encounters a $(NAME) elsewhere in the makefile,
the text is replaced by the contents of the list. So in the exam-
ple above, our main target, check , depends on all the files in
the list FILES .

The dollar syntax is used to introduce other results of the
dependency check. Here we are using $?, which is replaced by
the list of files that are newer than the target. There are other
magic dollar values that I’ll get to later. So if file2 and file4

are newer than the target, and we type make, then the cp com-
mand becomes

cp file2 file4 checkpoint

The target is a file called check that is there simply to record
the time that the last checkpoint copy was made. It’s created by
the touch command, which exists on all UNIX systems and
simply changes a named file, updating its modification time.

We should probably add a way of making a complete new
checkpoint copy to the makefile instantly:

checkpoint:

cp $(FILES) checkpoint

touch check

so we can now say

$ make checkpoint

and make a complete copy of all the files. Also, in this type of
makefile, I like to add something that I can use to obtain all
the names of the “interesting” files:

names:

echo $(FILES)

which means I can use the backquote operator in the shell
using the names. The command

$ grep fred ‘make names‘

will look for fred in the files that are relevant in the current
directory.

Implicit Rules
To make things somewhat easier for programmers, make

comes with a set of default rules that are generally loaded
when the command starts. The default rule set used to be
part of the binary of the program, but in recent years it has
migrated to a file stored in some public place; it’s /usr/

share/lib/make/make.rules on my Sun running
Solaris 2.6.

The default rules work with file suffixes, so the rules under-
stand that a file ending in .c is a C source file, a file ending in
.o is an object file containing a compiled module and so on.
The make program itself knows only about suffixes and is
given a strong hint of the order in which files will appear by
the contents of the special target .SUFFIXES . The target is
given all the suffixes that the rules know about. A simplified
default version for C programmers might be

.SUFFIXES= .o .c .h

The order of the list is important. Target suffixes come first, so
programs are made from .o files that are created from .c files.
C program files can also include header files that will end in
.h . The default file will contain a set of special rules that speci-
fy how to turn a file with one suffix into a file with another, so
to make a .c file into a .o file you will see a rule like this:

.c.o:

$(CC) $(CFLAGS) $(CPPFLAGS) -c $<

The various macro definitions here will be established with
default settings, so CCwill be cc , and CFLAGSand CPPFLAGS

28 SunExpert Magazine ■ June 1998

UNIX Basics

30 SunExpert Magazine ■ June 1998

are set to null strings. The purpose of these definitions is to per-
mit the user to set values in their own makefiles that establish
local definitions for the default rules. The $< at the end of the
line is another magic variable that is replaced with the name of
the dependency file. This rule can now be used whenever it’s
necessary to create a .o file from a .c file, so our makefile to
create hello from a.c and b.c can be made much simpler:

OBJS=a.o b.o

CFLAGS=-O

hello: $(OBJS)

cc -o hello $(OBJS)

Notice that there is no explicit mention of
the .c files. We’ve told make that it needs
two object files and it will use the suffix rules
to look for candidate source files. When using
the full default set, these candidate files can be
written in C (with a .c suffix), in C++ (with a
.cc suffix), in FORTRAN (with a .f suffix)
and so on. In this case, we are programming
in C, so make will successfully find a.c and
b.c , apply the compilation rule (using our
version of CFLAGS) and create the program.

Making Your Own Rules
Well, I started this article by discussing how I created

HTML files from a Perl source, so let’s return to that example.
We can, of course, create makefiles that contain specific rules
telling make how to create a .html file from a .pl file. This
looks something like

page.html: page.pl

$(PERL) -w page.pl > page.html

where we set the PERLmacro value to be the location of
the Perl binary on the system. The temptation is to cut and
paste this first definition whenever we add a new page into
the makefile and change the bits that need editing to specify
how to create the new page from the brand-new Perl source
file. However, in the long run, it’s much simpler to create a
rule and use the ability of make to deduce things about the
files it needs from the rule. The makefile looks like this:

TARGETS=m.html p.html

PERL=/usr/local/bin/perl

.SUFFIXES: .html .pl

.pl.html:

$(PERL) -w $< > $@

all: $(TARGETS)

The first line sets up the names of the HTML files that we

are creating. When we want to add a new file, all we do is
add a new target name to the list. In fact, the makefile only
has one target, all , and we tell make that it’s dependent on
the files we need to create.

We use the implicit rule that is defined in the middle of the
file to do the work of creating the target files. We must first tell
make that we will be making a .html file from a .pl file, and
we do this by setting two new suffixes into the .SUFFIXES tar-

get. Actually, this adds the two new suffixes to
the current extant list, so to clear the list we’d
need to say:

.SUFFIXES:

.SUFFIXES: .html .pl

Once we have defined the two new suffixes
we’re using, we can define a rule that is used to
create a .html file from a .pl file. This runs
the Perl interpreter with the -w option to help
with error checking–it takes its program from
a file in the dependency list ($<) to its equiva-
lent target ($@).

We are now in a situation where any change
in a .pl file will result in the appropriate
.html file being rebuilt when make is typed.
However, I’ve also said that the Perl script uses

a template file, and it would be a good idea to rebuild the pages
whenever that template file is altered. We need to add an expli-
cit dependency to force a rebuild. We can do this by adding

$(TARGETS): template

to the end of the makefile. Now when the template file changes,
all the files in the TARGETSlist automatically become out-of-
date and are rebuilt.

The good thing about creating a rule that applies to known
suffixes is that the makefile becomes very simple. We can add
new target files by adding their name to the TARGETSlist.
The makefile can be easily reused in new parts of the system
by copying it and replacing the TARGETSlist with the new
targets that are appropriate for that directory.

Finally
If you are running Solaris, and type make, and get a

“Command not found” message, then you need to be aware
that the make command lives in /usr/ccs/bin by default.
You need to change your search path to include that directory.
Check that the directory exists on your system first, and if not,
politely ask your systems administrator to load it for you. It’s
an option to the standard installed system. ✒

Peter Collinson runs his own UNIX consultancy, dedi-
cated to earning enough money to allow him to pursue
his own interests: doing whatever, whenever, wherever…
He writes, teaches, consults and programs using Solaris
running on a SPARCstation 2. Email: pc@cpg.com.

The good thing

about creating a

rule that applies to

known suffixes is

that the makefile

becomes very

simple. We can

add new target

files by adding

their name to the

TARGETS list.

	make: Mastermind of the Update
	make: The Basics
	More Syntax
	Implicit Rules
	Making Your Own Rules
	Finally

