
UNIX Basics
by Peter Collinson, Hillside Systems

JA
NE

 M
AR

IN
SK

Y

MIME
WW

e think of the Internet as
a recent phenomenon, but
email interchange on the

Internet uses a protocol that was defined
in 1982 and hasn’t changed substantially
since. The email protocol was defined
by RFC 822, written by David Crocker
(then at the University of Delaware). An
RFC is a “Request For Comments” and
is the way Internet protocols are docu-
mented. RFC 822 revised RFC 733,
which had been used on the ARPANET
since 1977. The “one-step back, one-
step on” correlation between 733 and
822 is simply an accident of history.
Actually, there is now a series of “accept-
ed” standards, and mail is documented
by STD 11. However, I guess that the
magic 822 number will stick around
for some time to come.

RFC 822 has been very successful.
It was very forward-looking, defining
the domain-based address structure that
we all use today. RFC 822 concentrates
on the envelope around the message that
is sent, it discusses the headers and their

format, but says very little about the
format of the message body.

However, the title of RFC 822 is
significant: “Standard for the format
of ARPA Internet text messages.” It’s the
word “text” in this title that is relevant.
The standard was created at a time when
computing was largely text-based. Email
use spread along with the rise of UNIX,
whose basic file format is text and whose
tools are designed to process text. Strict-
ly, the word “text” in this case means the
7-bit ASCII character set.

The use of text is also defined by
RFC 821, which specifies the Simple
Mail Transport Protocol (SMTP) used to
move the mail from machine to machine
over the Internet. Strictly, SMTP is con-
strained to use 7-bit characters formed
into lines of text that should be no more
than 1,000 characters long. Each line is
terminated by an end-of-line indicator,
which is formed from a Carriage-Return
character followed by a Line-Feed.

Actually, many UNIX implementa-
tions of email don’t enforce the 7-bit

restrictions and secretly support 8-bit
characters. This has provided some com-
fort to friends of mine whose languages
cannot be written properly in the ASCII
character set. At least they can send mail
in their own language, which, of course,
is “text” to them, but that text needs to
be represented by an 8-bit character set.
Such mail would probably work between
machines in Europe, but there is no
guarantee that a gateway somewhere
wouldn’t strip the mail back to a 7-bit
set, creating gobbledegook.

There are still problems with insert-
ing some of my friends’ names in the
headers of email that strictly use a 7-bit
coding. Many people are actually un-
aware of the problem and just put their
names into the headers using the correct
character set for their language. Because
I run my system in the Latin-1 locale
(or more properly, ISO-8859-1), I can
see every e-acute or c-cedilla. However,
if you are in the United States, you
probably cannot. Of course, access to
Latin-1 is of no use to the Japanese or

22 SunExpert Magazine ■ March 1999

UNIX Basics

the Russians, whose languages require completely different
character sets.

Using text as a transport medium causes problems when
you want to send a binary file to a friend. I suspect that we
are now living in a world where we need to send binary files
more and more.

Initially, binary files on UNIX were mostly compiled pro-
grams, but you could never make assumptions about file for-
mats. The original tar program could be used to encapsulate
several files into one archive file, which turned out to be a
binary file even if the files that were contained in the archive
were simply text. The header that was used between each file
was designed to be read easily by the program and contained
binary values. The folks at Berkeley changed this to the text
header that was later enshrined in the POSIX standard.

If you want to send a binary file to someone in safety, then
you need to encapsulate the data into a text form. Probably the
most widespread method of turning a binary file into text was
to use uuencode to create the text stream and uudecode to
unscramble it. These programs were widely available on all
UNIX systems as part of the UUCP suite that was used to
form the Usenet network. If you are going to use some kind
of encapsulation method, then you need to know that your
recipient can decode the information.

The first line of a uuencode d file gives the target file
name and its associated permissions. The remaining data con-
tains lines of characters. Each line starts with a byte count,
encoded as a printable character starting from “A” in the
ASCII coding sequence. The value “1” is encoded as “A”, “2”
as “B,” “3” as “C” and so on. Using the ASCII sequence with
“A” translating to “1,” the space character maps onto zero. So
when decoding the data and obtaining the byte count for the
line, you’ll read the first character, subtract the value of the
space character from it and the result is a numeric byte-count
value. The text that forms the remainder of the line follows
the byte count. Three 8-bit bytes from the source are mapped
into four printable characters, only six bits of each input byte
is used. Each character is mapped into a visible value using
the ASCII coding sequence described above.

In general, using uuencode to encapsulate a binary file
requires human intervention. Typically, the uuencode d part
of the mail message would be surrounded by “cut here” text
asking the receiver to save the message to a file and then run
uudecode on it.

Multimedia Mail
At the start of the ’90s, Nathaniel S. Borenstein, then at

Bellcore, started to look into the problems caused by the limi-
tations of using text as the basic mail transportation mecha-
nism. He wanted to allow people to interchange pictures,
video and audio in various formats but still work within the
confines of RFC 822. After all, email systems were a way of
transporting files from one person to another, the fact that
these files were mostly text was an artificial restriction. If
the RFC 822 standard could be adapted to carry multimedia
mail, then it would have zero impact on the mechanisms for
transporting mail that were in widespread use.

However, attempting to introduce multimedia mail capa-
bilities was still a daunting task because, even at that time,
there was a huge number of different mail reading programs
(the email world calls these user agents). Early on, he realized
that attempting to disseminate a brand-new, wonderful multi-
media mail reading and composing program would not work
because people would stick with their existing systems. He
needed to generate a system that would bolt onto existing
programs in a painless manner. The pain for the user must
be negligible. The pain for the implementor would be greater
and any system needed to present easy ways for the implemen-
tors of user agents to pick up on the new facilities. Borenstein’s
system, known as metamail , became the basis for alterations
to several user agents permitting them to handle multimedia
mail cleanly. A cornerstone of the approach was the mailcap

file, which allowed programs to have some centralized way on
a specific system of finding what Netscape Communications
Corp. later termed a “helper application”–a program on the
local machine that could handle image display or play an
audio clip. This meant that programmers of user agents didn’t
need to become audio or graphics specialists, they could lever-
age other people’s work.

However, for the capabilities to become widely used, some-
thing was needed in the RFC 822 protocol that was aimed at
this new breed of enhanced user agent. Something that would
tell the user agent what type of formatted file the mail con-
tained so that it could be decoded and passed to the relevant
helper application. Borenstein and Ned Freed (Freed was then
at Innosoft International Inc.) wrote RFC 1341, which defin-
ed three new header lines that were to be added to the 822
mail format. Incidentally, RFC 1341 has been superseded by
RFC 2045, and you should go there if you are interested in
delving into this subject in greater depth.

Being prudent people, the first new header line was designed
for future expansion and supplies a protocol version number.
The Mime-Version: field should be set to 1.0 to indicate
that the mail follows the conventions described in the RFC.

The second header line defines the type of content that is to
be found in the mail. An earlier RFC (RFC 1049 by M. Sirbu
of Carnegie Mellon University) had proposed that mail should
contain a Content-Type: field, but chose to use argument
keywords that were aimed at specific applications or devices.
RFC 1341 made the specification considerably more general,
allowing the argument field to give a broad type of application,
followed by a subtype. There are intentionally only a small list
of broad application types: application , designed to permit
binary data to be sent; audio and image , which are self-evi-
dent; message , defining a mail message; text , for text of
some form or other; and multipart , which allows one mail
message to encapsulate several other types of message.

The idea of having a broad type followed by a subtype
allows mail readers to easily reject message parts with which
they cannot deal. So if a mail reader cannot deal with images
of a specific type, it still knows that a message flagged as
image/something contains binary information that cannot
be displayed as text. However, the user agent may elect to pre-
sent other options, perhaps allowing the user to store the

24 SunExpert Magazine ■ March 1999

UNIX Basics
image as a file somewhere on their local disk.

The third new header line tackles the problem that RFC
822 mail is constrained to printable text. The Content-

Transfer-Encoding: header gives a standard method of
encoding the embedded information. The sender of the mail
can automatically turn their data into length-limited lines of
text, and have it be reconstituted by the recipient’s mail reader
without any special knowledge of the encoding.

Of course, transformation of the original data may not be
needed. If you’ve typed in an ASCII message, which contains
lines of less than 998 bytes (two bytes are needed for the end-
of-line indicator), then there is no need to alter your message.
The sender can use Content-Transfer-Encoding: values
of 7-bit , 8-bit or binary to indicate that no transforma-
tion has been made to the original data.

Should encoding be needed, the RFC provides two styles
of encoding. The first, more lightweight, encoding is called
quoted-printable and is designed to be applied to data
that is “nearly ASCII text.” The text perhaps contains a few
characters like the acute accent in “Café ,” or perhaps it has
very long lines, which need to be broken to ensure that they
are not truncated by any restricted gateway.

The quoted-printable encoding method attempts
to maintain message readability for naive mail readers while
allowing correct translation of characters for any mail reader
that can decode the message. To this end, all the 7-bit ASCII
characters are passed through unchanged. However, any char-
acter can be encoded as an equals sign followed by two charac-
ters that represent the character form of a hexadecimal value
(so the equals sign is encoded as =3D). The equals sign can also
be used at the end of a line to introduce an end-of-line indi-
cator that can be removed by the reading program. There are
some other conversions; see the RFC for the full gory details.

When there are a few characters that need to be hidden
from the transport mechanism quoted-printable en-
coding works well, imposing very little size overhead. But it
would prove to be very heavyweight if used for pure binary
files containing, say, audio or images. The RFC defines
base64 encoding to cope with binary files. The mechanism
is very similar to uuencode . However, some care has been
taken with the encoding of binary values into characters to
make that character subset portable into both ASCII and
EBCDIC. The encoding/decoding mechanism uses a table
rather than the pure ASCII sequence, ensuring that the final
representation has good portability across machines.

Content Types
As I said above, there is a very small number of basic

broad categories used in the Content-Type: field in the
mail header. The standards define a very small number of sub-
types, and there is now a registration system that allows the
registration of new ones. The registration database is quite
large now. The types you will mostly see in your mail are:

Content-Type: text/plain; charset="us-ascii"

This is the default setting for what might be termed “a normal

piece” of mail. The Content-Type: is text and the sub-
type is plain , indicating that the text contains no inherent
formatting information. Parameters follow the main argu-
ment, separated by a semi-colon. The charset parameter
defines the character set that should be used to render the
text. It’s not just ascii because the term ASCII has come to
represent a multitude of different character sets (RFC 2047
goes on at great length about this). I should have used US-
ASCII throughout this article to emphasize that I was talking
about a specific standard, but I thought it would confuse you.
The us-ascii character set points at a specific ANSI stan-
dard–the “7-bit American Standard Code for Information
Interchange,” ANSI X3.4-1986–and so is precise. Alternatives
to US-ASCII point to the various ISO standards that define
character sets, so mail from my machine says

Content-Type: text/plain; charset="iso-8859-1"

which is the character set that I call Latin-1.
Recently, browser manufacturers have been pushing

HTML as a basic mail interchange standard, and you will see

Content-Type: text/html; charset="iso-8859-1"

encapsulating an HTML document in the mail message. In
December, I interviewed Eric Allman (creator of sendmail

and founder of Sendmail Inc.) for the U.K. magazine, EXE,
for which I write regularly, and he said that HTML mail is
liked by businesses “because they can find out when you read
the mail since their Web server can be hit when you pull a
graphic. Also, they can tailor their mail message so that you
see what they want you to see when you read the mail, rather
defining its contents when they send it.”

However, these browsers don’t just send HTML hoping
that the reader will be able to deal with it; they use the multi-
part capabilities of Multipurpose Internet Mail Extensions
(MIME) to send alternative views of the same mail message.
The main header to the mail will contain something like the
following:

MIME-Version: 1.0

Content-Type: multipart/alternative;

boundary="++++Boundary_between_messages++++"

This tells the mail reader that the message actually contains
several alternate views of the same message. Each part will
be separated by

--++++Boundary_between_messages++++

and will start with a new Content-Type: and, possibly,
a new Content-Type-Encoding: . It is assumed that the
boundary text will not occur “naturally” in the body of the
message. Notice that the boundary field gains two hyphen
characters marking the start of the line. Similarly, the last
boundary field in a file has two hyphens appended to the
end of its text.

26 SunExpert Magazine ■ March 1999

The RFC requests that the least complex type of message
should appear first, followed by messages of increasing for-
matting richness. The idea here is that the message is some-
what more viewer-friendly. If the reader is using a naive mail
agent, then they should be able to easily find and see the
message as text.

Also, any text “outside the boundary” is
ignored. So text before the first boundary

marker, or after the last, can be used to con-
tain comments. You’ll typically see a mes-
sage like, “This is a multipart MIME mes-
sage,” appearing before the first boundary .
The comment is aimed at users of naive
mail readers, telling them what this odd-
looking message actually is.

Another possible multipart type allows
for attachments of different types to be
added to the message:

Content-Type: multipart/mixed;

boundary="++++Boundary_between_messages++++"

I tend to use this when sending Microsoft Corp. Word docu-
ments to people. The first part of the message will be some
explanatory text and the second will be the Word document,
which is basically a binary format, and will generally be en-
coded using the base64 technique.

MIME Mail on Your Sun
In general, the PC world has embraced MIME because

it needed to find some way of sending binary email, because
many PC applications deal with what is essentially a binary
file format. Sadly, Sun Microsystems Inc. has been lagging
woefully behind these developments. To be fair, I haven’t had

a chance to look at the Solaris 7 release that
has found its way to my office, so things may
have changed. The alternatives provided on
earlier Solaris releases are pretty poor.

I’ve been using email for eons. At one point,
some years back, I migrated to the Rand MH
mail system, and I’ve been using it ever since.
These days, I use Brent Welch’s excellent exmh

interface that sits in front of the command-line
programs that are normally used to drive MH.
MIME email is handled by exmh, and it will

also cope with some simple HTML email messages with its
own built-in HTML browser. One of the benefits of using
MH is that you can still use the basic MH commands when
you are far from home and can only log in with telnet to
read email from a GUI-free zone. I did this once from a public
library in Fort Bragg, CA. I wasn’t desperate to read my email,
but it seemed fun and sounded like a challenge to be able to do
it from a small town on the Californian coast. Typing telnet:

and my machine name into Netscape gave me an interactive
login to my computer in the United Kingdom, and MH allow-
ed me to read my messages and reply to them.

However, I suspect that getting and installing all the pieces
for exmh from scratch is not for the fainthearted. First, you
have to install MH and then Tcl/Tk to support exmh. Install-
ing exmh is actually the least of your worries, it just slots in.
Again, to be fair, installing MH and Tcl/Tk is simply a matter
of getting the code and compiling it, and I would expect there
to be no problems.

Another alternative is to install Netscape Communicator
and use its inbuilt email facilities. Again, I haven’t tried doing
this. I was put off by the size of the file that was required.

Reading and Software
The sources for this article are all RFCs, actually. I haven’t

come across a book that explains MIME and its influence
on email or the Web. MIME was picked up and used by the
designers of HTML to provide data typing for the protocol,
which, to me, seems a highly commended case of not rein-
venting that wheel. RFCs are available using anonymous
FTP to ftp.isi.edi , although I used a local mirror site
to access the information.

You can get exmh from http://www.scriptics.com ,
and you will also find the most recent Tcl/Tk sources there
as well. ✒

Peter Collinson runs his own UNIX consultancy, dedicated to
earning enough money to allow him to pursue his own interests:
doing whatever, whenever, wherever… He writes, teaches, con-
sults and programs using Solaris running on a SPARCstation 2.
Email: pc@cpg.com.

UNIX Basics

28 SunExpert Magazine ■ March 1999

	MIME
	Multimedia Mail
	Content Types
	MIME Mail on Your Sun
	Reading and Software

