
DA
VI

D
FA

US
T

UNIX Basics
by Peter Collinson, Hillside Systems

SW Expert ■ September 2001 23

Grep is Fundamental
SS

everal UNIX tools are so fundamen-
tal to my daily life that I almost
take them for granted. The grep

command is one of them. The name of
the command is an acronym, Global
Regular Expression Print, and it emerged
from a common command sequence
people typed regularly into the ed editor.
To look for all the occurrences of a string
in a file when editing it with ed, type

g/fred/p

which finds each line containing the
string “fred” and displays it. The text
between the slashes can be a Regular
Expression, which is a way of expressing
text patterns that are to be sought in
the file. Of course, we usually type
fixed strings because we are looking
for something concrete.

Extracting this searching functionality
into a command means you can search
for the string in a named file or set of
files and print any line that is found.
Following on from my example,

$ grep fred *.ms

looks for fred in all the files in the
current directory that end in .ms. In
typical UNIX style, grep only outputs
something when the line matches. If
given more than one filename, it will
print the contents of any matching line
preceded by the name of the file where
a match was found.

filesys.ms:ln: cannot create

fred:

grep.ms:string like fred.

korn.ms:% set fred=jim

Actually, there were 47 matching
lines when I searched my article files,
telling me that I am fond of using “fred”
as an example string in my articles.

If you only search one file, then grep
will drop the filename from its output. If
you want to put it back, search the null
device as well as the file using

grep fred onefile /dev/null

This little goody was one of the earli-
est pieces of feedback sent to me by a
reader, and I’ve been using it ever since.

Using grep to search for strings
answers the question “Can I find the
text I am looking for in these files?”
However, I probably use grep consider-
ably more to restrict my output, reduce
voluminous output to something that’s
readable and actually answers the ques-
tion I am asking.

For example, let’s say that I want to
check that sendmail is running on the
machine. I want to use the ps command
to look at all the running processes and
will type

$ ps -e

or perhaps

$ ps ax

depending on the flavor of ps I am
using. On a typical machine, the com-
mand will print many lines of output

UNIX Basics
and, of course, I could look down the screen to find the
sendmail process. It is, however, much quicker to use
grep to select the output I want:

$ ps -e | grep sendmail

354 ? 0:03 sendmail

The answer to my question is “Yes.” The sendmail
daemon is running and has process id 354. If sendmail is
not running, then I will see no output.

I’ve used grep to reduce the amount of output, in this case
to a single line, and this answers my question painlessly. Using
grep gives me a result that is certain, so I don’t have to look
down several lines of output searching for something that may
not be present. The idea that you should reduce the output of
commands so you only obtain the answer to the question you
are asking is applicable to many other situations with grep
providing a “yes/no” filter for the output.

Options
The grep command has several useful options that modify

its behavior. One that I use frequently is -i which forces a
case independent search. This is particularly helpful when
looking for matches in a set of documents where the word
may be capitalized in the source. Another is -w, which looks
for a “word.” Again, this is more useful when searching a set
of text documents and will pick complete words from the
text. Your version of grep may not support this option.

I often use the -l (ell not one) option to grep. When
searching a set of files, the -l option will restrict its output to
the file names where a match is found. This is useful for provid-
ing editors with lists of files based on their content. For example,

$ vi `grep -l lookfor *.src`

runs grep looking for the string lookfor in the set of files
ending with .src in the current directory. The list of found
files is then supplied to vi via the back-quote operator where
the output from command enclosed in the back quotes is used
as the arguments to the vi command. The file handling com-
mands in the editor can be used to step through the files
making whatever changes are needed. If no files are found,
then vi will be started with no arguments, and will open up
an empty file. Obviously, you can use any editor in place of
vi, as long as it deals sensibly with multiple file arguments.
Some don’t.

Another useful option is -v which reverses the sense of the
command. Rather than printing the lines that match, it selects
the lines that don’t. I use this when refining a search, and use
grep to find one set of lines and then pipe the result into
grep -v to reduce the output.

If you’ve managed to get this far in this article, then I suspect
that I’ve covered grep as it is used 99% of the time by most
people. Few people will use even the simplest of the regular
expression features that are supported by the command. Often
it’s not necessary to “get complicated” because life is too short.
You can achieve the needed output by using several invocations

of grep in a pipeline, each successively refining the output.
However, getting the best from many UNIX tools demands a
basic knowledge of regular expressions, and I don’t apologize
for returning to the topic again.

Regular Expressions
We’ve already seen that when you place a specific character

sequence in a regular expression, then the search algorithm
will look for that character sequence in the argument files. A
match will be found when the complete string is found any-
where on any line in the source. Regular expressions provide
a syntax for expressing complex matches, and we program
the match using special characters in the regular expression
called meta-characters.

Don’t confuse the meta-characters used in grep and other
programs that use regular expressions with the special charac-
ters employed by the shell to expand file names. Sometimes
the same characters are used, but the meanings are different.

Also, when typing regular expressions into grep on the
command line, we need to “get them past the shell.” I have
a habit of always wrapping single quotes around the regular
expressions to ensure that they end up in the running grep
command in an ungarbled form. Sometimes, in fact most
times, quoting the program argument is not needed, but it’s
a good habit to get into.

The two simplest meta-characters to understand are ^ (caret)
and $ (dollar). The caret will match the start of a line in the
source file, and the $ will match the end of the line, so

$ grep '^fred' *

finds all the lines in files in the current directory that start with
the word fred. The match is case sensitive.

$ grep '^fred$' *

finds all the lines that contain only the word fred.
A common idiom is ^$ - matching an empty line, so

$ grep -v '^$' file

will strip all the empty lines from the file and print the result
to standard output.

If we want to look for the characters caret or dollar, then we
must quote them using a backslash.

grep '^\^' file

will find all the lines in the file starting with a caret.

Variable Text
The real power of regular expressions comes from their

ability to match variable or unknown text. If you are poking
around in log files, you may want to match some known piece
of text, followed by some text that’s essentially unknown,
followed again by some known text. Let’s build this ability
up slowly.

24 SW Expert ■ September 2001

First, the period (.) in any character position in the regular
expression will match any character that is found there. So

$ grep '^fre.$' /usr/dict/words

free

fret

looks for all the four-letter words in /usr/dict/words that
start with fre followed by any character. I could have used the
-w option instead of constraining the line to four characters
with the caret and dollar syntax.

There’s a tendency when you are looking for something,
such as fred, to think of this as a single string that is to be
matched. It’s better to read and write the expression from left to
right, thinking about what options are available to be matched
in the particular character position. There will be some constant
parts that are shown by characters and some variable parts
described by meta-characters. So, the regular expression ^fre.$
is read as: the start of the line, followed by f, followed by r,
followed by e, followed by any character, followed by the end
of the line.

OK, so we can use the period to mean any character, but
how do we express a variable character sequence? The asterisk
(*) meta-character is used for this. When a * appears in the
regular expression, the expression will match zero or more
occurrences of the previous character in the regular expres-
sion. The “previous character” can be a meta-character or
meta-character sequence. When it’s a period, then the idiom
.* will match sequences of any characters, so

$ grep '^ap.*tion$' /usr/dict/words
aphelion

apparition

apperception

application

apportion

apposition

apprehension

approbation

searches the dictionary for any word starting with ap and end-
ing with tion. It’s always important to recognize that the star
operator will match zero occurences of the previous character
and this feature can result in some confusion. It might seem
reasonable to type

$ grep '^al*' /usr/dict/words

when looking for all the words starting with al and all
in the dictionary, but if you try this, you’ll find that it will
match all the words starting with a. Reading the expression
may help: it’s the start of the line followed by a, followed by
l repeated zero or more times. So we’ve allowed the match
to have no l.

The regular expression really needed is

$ grep '^all*' /usr/dict/words

The egrep command allows for “extended regular expres-
sions” and one of its extensions gets around this problem. The
+ (plus) character is used like the star, but matches one or more
occurences of the previous character. However, egrep uses
many more meta-characters and you may need to quote them
if you want to match them in the source files, so beware when
using egrep and expecting it to behave like a consistently
extended grep.

The star meta-character always matches the longest string
that it can find in the source resulting in what are apparently
strange results from time to time. It’s rarely a problem in
grep where you are looking for some text, but can be a
problem in editors (or the expr command) where there are
mechanisms to pick out the matched text and then operate
on it.

Alternations
It’s also common to want to look for alternate characters

that may appear in certain character positions. If we want to
match Fred or fred in the source file, for example, we need
to be able to match F or f in the first character position. We
use square brackets to enclose a list of characters to be
matched so

$ grep '^[Ff]red' files

matches any line starting with either fred or Fred. I could
have used the -i flag to achieve this, but that would be less
precise. It would match all possible case variations of fred.

It’s common to want to put ranges and boring to have to
express them as a list. We can express ranges by using a minus
character. Using this, we can match integral numbers at the
start of the line by typing

$ grep '^[0-9][0-9]*' files

Notice that I’ve repeated the range to avoid the “zero or
more” problem with the star meta-character. Normal quoting
rules don’t apply inside alternations, so you cannot use back-
slash followed by a minus to include the minus in the list of
characters to be matched. The trick is to add the minus
character either immediately after the first square bracket or
immediately before the terminating square bracket. The same
rule applies when you want to include square brackets in the
alternation list.

SW Expert ■ September 2001 25

UNIX Basics

It’s common to want
to put ranges and
boring to have to
express them as a
list. We can express
ranges by using a
minus character.

You sometimes want to match inverses of lists, and do this
by adding a caret after the first square bracket. So

$ grep '^[^0-9A-Za-z]' files

finds all the lines in the file that don’t start with an alphanu-
meric character.

I also use alternations when writing regular expressions that
include spaces–mostly for readability–which also lets me
specify white space as a tab character or a space. It’s hard to
tell whether the blank parts of files contain spaces or tabs,
and when matching white space don’t get caught out by the
zero or more rule.

Grep Flavors
Your machine has several flavors of grep. The common

extra two are fgrep and egrep. The “Fast Grep” or fgrep
command is supposedly faster because it doesn’t handle regular
expressions but does a straight string match. The program may
have been faster when the command was originally created, but
the standard fgrep is actually slower than the grep command.

I’ve already mentioned egrep, a version of grep that sup-
ports “extended” regular expressions. Perhaps the most useful
extension is the ability to provide whole word alternatives or
more complete alternative regular expressions that match the
data on the source lines.

Pulling multiple lines from a file is difficult in regular grep.
You can end up writing crazy alternation lists. For example, if
we are scanning your mailbox looking for “From:” lines and
“Subject:” lines, then you would have to write something like

$ grep '^[FS][ru][ob][mj][:e]' /var/mail/$USER

If you look hard, you’ll see that this will match the start of the
line, followed by either From: or Subje. It will do the job,
but isn’t particularly precise and may print more than you
want. Worse, it is easy to get it wrong when you are typing it.
With egrep, we can write these alternates out clearly:

$ egrep '^(From|Subject):' /var/mail/$USER

The round brackets are used to indicate that the regular
expression contains sub-expressions, and the vertical bar means
“or.”

If you are looking for several strings or regular expressions
at once, and that list is long, then both fgrep and egrep
support an option that allows the strings to be matched (for
fgrep) or the alternate regular expressions (for egrep) to
be taken from a file. You supply the -f option for both com-
mands and follow it by the filename where the list is to be
found. It’s also possible to supply alternatives to either com-
mand using the -e option.

Finally
The grep command has a long history and has inspired

research into the speed of its algorithms. System V UNIX
inherited some slightly different options to its grep commands,
and on Solaris a special version (/usr/xpg4/grep) can supply
compliance with XPG4 standards. The grep family are useful
as a basic tool, looking for text in files, or as filters reducing
the amount of information displayed.

I haven’t covered all the options for grep and regular
expressions in this article. Specifically, I’ve omitted all the
possible meta-character forms and have stuck to the most
commonly used subset. I have included the common idioms
that I hope you will soon be typing without thinking about
it. I recommend that you look at the several manual pages
when using regular expressions, and especially check the manual
pages when you are getting apparently anomalous results. One
of the problems with regular expressions is that they are much
easier to write than read or explain–write once read never.

Further Reading
The best book I have on grep is UNIX Power Tools by

Jerry Peek, Tim O’Reilly & Mike Loukides, published by
O’Reilly and Associates; 2nd Edition, August 1997, ISBN
1-56592-260-3. ✒

Peter Collinson runs his own UNIX consultancy, dedicated to
earning enough money to allow him to pursue his own interests:
doing whatever, whenever, wherever … He writes, teaches, consults
and programs using Solaris running on an UltraSPARC/10. Email:
pc@cpg.com.

26 SW Expert ■ September 2001

UNIX Basics

	Grep is Fundamental
	Options
	Regular Expressions
	Variable Text
	Alternations
	Grep Flavors
	Finally
	Further Reading

