
UNIX Basics
by Peter Collinson, Hillside Systems

26 SW Expert ■ April 2000

ST
EP

HE
N

SC
HI

LD
BA

CH

A Programming Primer
II

’m always writing bits of programs
for this column, programs that
perhaps use the UNIX tools or

employ one shell or another. While
I was considering what to write this
month, it occurred to me that I often
make assumptions that underpin the
nature of programming. I often don’t
realize that I am taking these implied
concepts for granted, because I’ve
been writing programs for more than
30 years, and they’ve become second
nature.

In many ways in those 30 years, the
nature of computing has changed, with
each step along the path building on
what went before. My son’s idea of how
his computer actually works is colored
by the view that he is presented by the
operating system he has grown up with:
Windows. When we discussed this, it
hadn’t really occurred to him that many
of the facets of the system he uses were
not easily supported by the underlying
hardware. He had not comprehended
that Windows presented him with an

interface that bends the reality of the
hardware in a way that is intended to
make the system easier to use.

Programmers who were familiar with
the way programs worked created the
UNIX tools and shells, and many of
the concepts used in programming have
found their way into the tools that we
all use every day. To understand this,
let’s take a peek at the ideas in program-
ming languages and systems.

I started my programming career by
learning FORTRAN IV. FORTRAN
was the creation of computer language
pioneer, John Backus, whose task in
1954 was to develop a new compiler for
the IBM 704 computer. FORTRAN
took around 25 man-years to develop.
Saul Rosen says in his 1967 book,
Programming Systems and Languages,
“Like many of the early hardware and
software systems, FORTRAN was late
in delivery, and didn’t really work when
it was delivered.” Somehow, I feel that
not much has changed.

FORTRAN is an abbreviation of

FORmula TRANslation, and was
designed as a scientific language, allowing
sets of familiar mathematical expressions
to be turned into computer programs. It
was groundbreaking. Before it existed,
people had tried to create languages, but
most programs had to be expressed in
machine code. Initially, a human would
create the binary codes for the instruc-
tions to be executed. Later, the machine
helped somewhat. With assembly lan-
guages, humans wrote programs using
words rather than numbers and the sys-
tem translated those words into the
appropriate binary code. However, in
both cases, the programmer wrote code
for the machine, and each statement
mapped onto something the machine
understood as a single instruction.

How Things Work
The way that computers work hasn’t

changed in any fundamental way since
those early days. If we neglect all the
peripherals, a basic computer consists of
a Central Processing Unit (CPU) and

UNIX Basics
some memory. The CPU contains regis-
ters that hold numbers, and all the real
work that the CPU performs happens in
those registers. The maximum number
of binary digits these registers hold gives
us the word length of the computer. We
are now moving toward using 64-bit
machines. Nowadays, we are used to
thinking in bytes, groups of 8 bits. It was
not always so, I did my Ph.D. with a
PDP-8 whose word length was 12 bits.
For the record, the PDP-8 was manufac-
tured by Digital Equipment Corp. and
was the first widely used minicomputer.

The arithmetic unit in the CPU
works with whole numbers (usually
called integers). With a fixed word length,
this gives a maximum and minimum
number that can be stored. In some ways,
I am sure there’s an element of magic for
many people in the way computers deal
with numbers. We all know that num-
bers are stored as binary patterns, and the
computer has the capability to perform a
set of fixed operations on the binary pat-
terns. My January column discussed the
representation of negative numbers in
computers (see “The Time,” Page 24,
http://sw.expert.com/C2/SE.

C2.JAN.00.pdf). In fact, what I des-
cribed was one way to represent positive
and negative numbers. The method I
talked about is designed so that adding
positive and negative integer numbers
together “works.” The reality is that
when we type two numbers into a com-
puter, there are many ways of represent-
ing the numbers in binary and we don’t
really care as long as the result that’s
printed on the screen is correct, and
the result is achieved speedily.

We often want to perform operations
on numbers that are not just integers,
called real numbers. To do this, we
adopt a binary representation, enabling
the computer hardware to operate on
the binary patterns to create the correct
answer at the end of the day. If the CPU
only supports integers, then we need
to use a binary representation that can
make use of primitive integer opera-
tions. We write a program or a portion
of a program that can deal the mapping
of our chosen binary representation of
real numbers into a set of integer opera-
tions and back again for storage.

Consequently, to handle real num-

bers, we need to use a binary pattern
that represents the number in a differ-
ent way from the way that integers are
stored. Perhaps we’ll adopt a scheme
where some portion of the word will be
the integral part of the value, and some
portion will be the fractional part. This
coding method is often called fixed-point
number representation.

However, for scientific calculations,
we want to deal with very large or very
small numbers. This is done with float-
ing-point numbers. Floating-point num-
bers also split the binary pattern into two
chunks. Actually, I don’t want to get into
the actual mathematics behind the repre-
sentation because it’s not easy to explain
simply. Suffice it to say that the represen-
tation allows a wide range of fractional
numbers to be stored and manipulated
arithmetically. Floating-point arithmetic
is most often done using an additional
piece of CPU hardware called the float-
ing-point unit.

Incidentally, the representation of
floating-point numbers isn’t particularly
compact. It has been usual to use 64 bits
for the storage of the numbers for some
time. Another problem is that the way
the numbers are stored can sometimes
result in imprecise calculations. I didn’t
say “incorrect,” I said “imprecise.”
Essentially, the representation is prone
to “rounding error,” where a number
cannot be accurately represented and
may be rounded to the nearest figure.
For this reason, I rarely use floating-
point numbers for monetary calcula-
tions. It’s easier and more accurate to
make programs work in pence rather
than pounds (or cents rather than dol-
lars on your side of the big pond).

Memory
The memory of the computer con-

tains binary patterns. Some of the
memory will hold the program that is
executed, so the binary numbers in that
part of the memory are values that are
understood by the CPU to be instruc-
tions. Some of the memory will hold
data on which the program operates.
Most computers cannot tell the differ-
ence between stored instructions and
data. So, they cannot object when a
programming error attempts to add
two instructions or treat some stored

data as part of the program.
The best way to visualize memory is

to think of it as a set of boxes placed end
to end, such that we can say, “put this
item in box number 500,” or “get me
the contents of box number 4506.” Each
memory location has an address that
the CPU uses to identify it. The CPU
obtains the value of a memory location
by sending the address for the location
that it needs to the piece of hardware that
controls the memory, and is returned a
value. It can also load the memory by
sending some data and an address.

When we start the computer run-
ning, we load a special CPU register,
called the program counter, with the
first address of the program that’s
stored in memory and say “Run.” The
CPU now goes into a loop. First, it
fetches the contents of the memory
location that’s stored in the program
counter. Second, the contents are
assumed to be an instruction for the
CPU. Third, the instruction is decoded
and the appropriate action is taken.
Finally, the program counter is incre-
mented to automatically point at the
next memory location in the program.

The program, then, is a set of
instructions that are executed sequen-
tially. This is normally called the flow
of control. Each instruction is at a primi-
tive level. For example, “load this regis-
ter from this memory location,” or “add
these two registers together,” or “place
the contents of this register in memory
location number 272386.”

We can affect the flow of control by
loading the program counter. It’s easy
then to create a loop, jumping back to
the start of the program. We can also
load the program counter conditionally,
depending on the result of a test. Often
this is expressed as “if the result of the
last operation was zero, then jump to
this memory location.” Of course, we
can often test different aspects of the
last operation, like “was it nonzero?”
or “was it negative?”

High-Level Languages
FORTRAN was born into a com-

puting world where it was the norm
to program in fairly low-level machine
instructions. Programs were hard to
write, and even harder to debug.

28 SW Expert ■ April 2000

http://sw.expert.com/C2/SE.C2.JAN.00.pdf

SW Expert ■ April 2000 29

UNIX Basics
The original FORTRAN paper by

Backus (and others) is reprinted in
Rosen’s book and goes to great lengths
to justify the time saved by using
FORTRAN over previous methods. It
seeks to calm the fears of the people
who doubted its efficiency. Yes, it really
could generate programs automatically
from complex statements that ran as
fast as those that were hand-coded.

Another feature of FORTRAN was
apparent when I started to use it. It
allowed programs to be portable from
machine to machine. I didn’t need an
IBM machine to run FORTRAN. By
creating what we think of today as a
“model” of how a computer worked and
supplying a method of mapping the
model onto the underlying hardware,
you could take a program written for
one machine, translate (or compile) it,
and run it on another.

Some elements of the FORTRAN
model are still in use today. For example,
a program is a series of statements that
are executed in order from the first line
to the last. This idea arises from the way
that the computer itself works. Essen-
tially, the flow of control in a program is
similar to the flow of control in a com-
puter. This notion is so deeply embed-
ded in almost everything we do that it
seems almost a truism to talk about it
in any great depth.

Most statements in FORTRAN per-
form some form of arithmetic and gen-
erate a result that is stored in memory.
We label the memory address with a
name and call it a variable. The state-
ment looks like an algebraic equation:

A = B*C + D*E

The A here is the destination of the
value of the computation that takes
place on the right-hand side of the state-
ment. The right-hand side is written in
familiar algebraic form that we all learn
at school, so we know that the above
example means multiply B by C and add
that result to the product of D multiplied
by E. If we want something different to
happen, we use brackets:

A = B*(C + D)*E

This type of statement is called an

assignment statement, because we are
computing a value and placing it into a
variable. There’s often a need to include
constant numbers on the right-hand
side of an assignment statement, and
you just write them in as needed.

However, the use of the equals
sign for assignments can sometimes
be confusing to the mathematically
trained mind. It doesn’t mean “mathe-
matical equality,” it means use the left-
hand variable as a destination for the
computation.

The problem of the interpretation
of the equals sign is made plain by
the idea of incrementing a variable,
written like

I = I + 1

which says take the value from the
memory location, add one to it and put
it back in the same memory location.
Programs often contain statements like
this. We use I to control a loop, count-
ing the number of times that a section
of the program is executed.

Types
What about dealing with floating-

point numbers? How do we force one
calculation to be done using integer
arithmetic and another to use the float-
ing-point unit? This is a question
about the type of variables. Knowing
the type has also been important on
many machines because a floating-
point number occupies twice the num-
ber of bits an integer does. Also, the
language compiler will wish to generate
different instructions to handle a float-
ing-point add operation than it uses to
execute an integral one. However, there
is nothing in the statements above that
overtly indicates the type of the vari-
ables that are being used.

FORTRAN adopted a simple policy.
If a variable name started with I, J, K,
L, M or N, then it holds an integer, other-
wise it contains a floating-point number.
The choice of letters came from com-
mon mathematical practice. We are left
with this legacy today. Many program-
mers use I, J, K, L, M or N for simple
counters and other integral values.

UNIX Basics
As time went on, it was realized

that just being able to invent a variable
as the program unfolded was a large
source of bugs. You could mistype a
variable name and nothing would spot
that there was a problem. Most modern
languages insist that you declare all
variable names. You say at the start of
the program: “These are the variable
names I intend to use,” and the com-
pilation process will detect any mis-
typings and complain loudly.

Arrays
The objects that you did have to

declare in FORTRAN were arrays.
You used a DIMENSION statement
to tell the compiler that a particular
variable name was to be tied to the
start of a contiguous section of memo-
ry. The size of the array, essentially the
number of variables the array can store,
is given by the DIMENSION statement.
The standard variable typing rules that
depend on the initial letter of the array
name were also applied to the array,
so the array would have a type and
elements from the array would behave
correctly in arithmetic statements.

An array is essentially a section of
memory that contains n variables,
where n is the size of the array. Some
way is needed to access each element
of an array, because few languages are
able to handle arithmetic operations
on the whole array. The convention is
to use a subscript in brackets:

Z = A(1) + A(3)

This will add the first variable to the
third and place the result in Z. Some
languages use square brackets for array
access rather than round ones, largely
because it makes things easier if the
compiler can distinguish between the
round brackets used to impose prece-
dence on arithmetic expressions and
those brackets used to indicate an array
access. Also, some languages define
array indexes to run from zero to n-1.

You can place an array reference
anywhere in the code where a variable
is written normally. The real power of
arrays emerges when you replace the
value inside the subscript brackets by a
variable. To sum the values of an array,

you’d say something like the following:

SUM = 0.0

DO 5 I = 1,1000

5 SUM = SUM + A(I)

The best way to understand this is to
walk through it. The first statement
sets the accumulator to zero. The DO
statement sets up a loop whose last
statement is marked by the label 5.
Each time around the loop, I will take
new value. It starts at 1 and is incre-
mented by one until it is equal to
1,000, at this point the loop terminates
and control passes to the statement
immediately after the end of the loop.

The first time around the loop, I
will be 1 and the contents of the first
array element will be added into SUM.
The next time, I will be 2 and A(2)
will be added in and so on. Eventually,
the sum will be calculated.

In a very few lines, we can achieve a
task that not only would be a bore to
write out, but doing so would also be
prone to errors. Notice also that by
replacing the 1 and 1,000 in the DO
loop by variables, we can calculate dif-
ferent sections of the array using the
same basic code. If you think about this
idea, what’s happening is that we are
using data (the contents of the start
and stop variable for the loop) to con-
trol the program. I often write very
general programs that are data-driven
in this way.

All the main languages support
arrays. Many, including FORTRAN,
support two-dimensional arrays aimed
at scientists that wish to program oper-
ations on matrices. Many scripting lan-
guages support associative arrays, where
the index is not a number but a text
string. Again, the idea is to allow the
programmer to write code that process-
es a single element. I use associative
arrays an immense amount in Perl,
often to allow me to data-drive the
general-purpose code I have written.

Evolution
We have always been standing on

the shoulders of someone else’s efforts
as computing has developed. What has
happened has been often conditioned
by what went before. FORTRAN pro-

vided high-level access to a set of under-
lying facilities provided by a machine.
The primitive objects in the FORTRAN
world mapped pretty closely onto what
the machine could do.

However, programmers have wanted
or needed to handle other types of data
in a simple fashion. For example, I
suspect nearly all the programs I have
written in my life have been concerned
with handling text and not numbers. In
C, which was designed as a high-level
assembler, with primitive operations
mapping directly onto the hardware,
strings are handled as arrays of charac-
ters. A set of standard routines is imple-
mented to provide the functionality I
need as a programmer. Other program-
ming languages have handled strings by
allowing the syntax of the language to
cope, so in many languages, you can
join strings together:

world = "world";

str = "hello " + world;

This looks like familiar assignment
syntax, but it is doing complex string
handling using a set of hidden rou-
tines. One of the reasons for doing
this is it feels natural for the program-
mer to extend their assumptions about
variables and assignments into the
field of string handling.

Further Reading
In this article, I’ve referred to one of

my undergraduate texts that still lives
on my working bookshelf. It’s called
Programming Systems and Languages,
edited by Saul Rosen and published by
the McGraw-Hill Book Co. in 1967.
It seems to have predated ISBNs. I
suspect the book is out of print, so hit
your local library if you are interested.
It contains a bunch of early papers
on language design and development,
the legacy of which we are still living
with today. ✒

Peter Collinson runs his own UNIX
consultancy, and is dedicated to earning
enough money to allow him to pursue his
own interests: doing whatever, whenever,
wherever… He writes, teaches, consults
and programs using Solaris running on
an UltraSPARC/10. Email: pc@cpg.com.

30 SW Expert ■ April 2000

mailto:pc@cpg.com

	A Programming Primer
	How Things Work
	Memory
	High-Level Languages
	Types
	Arrays
	Evolution
	Further Reading

