JANE MARINSKY

The

've been idly watching Robert X.
I Cringely’s “Glory of the Geeks”

television series that was recently
broadcast on this side of the pond. Just
in case the series passed you by, it was
four programs from PBS on the history
of the Internet. “Pop” histories of things
with which you've been involved are
always fun, providing a sort of alternate
misreality. Actually there were several
interesting interviews in this series, but
I think that a veil needs to be quickly
drawn over the things that were missed
or misreported. | guess history is a win-
nowing process, people who really did
the work get lost, while one or two make
it into the history books or, in this case,
onto the television screen.

Anyway, one slogan popped up in the
series that’s worth thinking about when
defining points in the history of com-
puting: Sun Microsystems Inc.’s slogan,
“The Network is the Computer.” This
slogan takes us back to the beginning of
Sun in the early ’80s and the creation of
the workstation. Of course, Sun was not

22

UNIX Basics

by Peter Collinson, Hillside Systems

rlogin Program

actually responsible for the idea, but was
the first company to make a huge success
of selling a workstation that would run
UNIX and opened up a market for what
we now think of as the desktop computer.

Networking on UNIX started early
with the development of UUCP, which
began life as a quick hack connecting
two machines together with serial lines
and grew into a worldwide network
containing several thousand machines.
What's often lost in most popular ver-
sions of the Internet story is how UUCP
widened expectations of how networking
should be done. The UUCP network
gave email and news to many people and
created a demand for the fully interactive
services that we use today.

The basic commands that were sup-
ported on the 4.2BSD operating system
and shipped with the early Suns were also
quick hacks. The rlogin ~ (remote login)
and rcp (remote copy) commands were
quickly put together by Bill Joy when
the networking code in the BSD kernel
was newly operational. (Bill Joy, a Sun

SunExpert Magazine m December 1998

founder and software genius, was the
prime mover of UNIX at the University
of California at Berkeley, in case that
name has passed you by.) The commands
were intended as a stopgap to see if the
networking code worked and were to be
used only until the “official” ARPANET
protocols of FTP (for file copying) and
Telnet (for remote login) were developed.
Of course, in the way of all quick hacks,
we still have the rlogin ~ and rcp com-
mands on machines today and they are
still useful.

rlogin

Therlogin command allows you to
sit on one machine and log into another.
You probably do this every day and take
it for granted, but there’s actually a con-
siderable amount of clever stuff going on
to make this work the way you want it
to, which means “with as few surprises as
possible.” Some of the clever code resides
in the program that is running locally
and behaving like a terminal, which is
the rlogin program; and some on the

UNIX Basics

remote system. Let’s start with what is happening locally.

The fewest number of surprises will occur when the behavior
of the remote machine when accessed over the network is iden-
tical to the normal behavior when logging in via a terminal. |
suppose that “logging in via a terminal” is rare these days, but
this is still the model that is used.

Terminals are bidirectional devices, that is, they permit you
to type into the computer and receive text at the same time.
The job of rlogin is to make a connection to the remote
machine and wait for you to type something so it can send it
down the network wire to your programs running remotely.
At the same time, it needs to wait for data from the remote
machine so that it can write it onto your screen. Both data
flows need to be independent of one another.

The consequence of the bidirectional flow is that rlogin
needs to look for data from two sources. Making a single pro-
gram wait for data from more than one source was not easy
in the early UNIX systems. The traditional approach was to
split the program into two processes, each handing flow in
one direction. So one process would handle data transmission
from your keyboard to the remote machine, where most of its
time would be spent waiting for keyboard input. The other
process would handle data travelling in the reverse direction,
where most of the time it would be waiting for data to come
from the network.

UNIX makes all of its devices into files, so each process is
forced by the kernel to wait for input from an open file. The

process performs a read system call on the open file and is put
to sleep. The read call returns data to the process, waking it up
only when data is present in the kernel. When data appears,
there’s a quick flurry of activity as it is passed on and then the
process goes back to sleep, waiting for more data.

Using two processes for bidirectional flow does work, but
there are cases where the two processes need to share data and
sharing is easier if we can use a single process instead of two.
The fundamental problem is that we can only wait for data
arriving from one source. The 4.2BSD solution was to imple-
ment the select system call. Specifically, the system call
actually allows a program to wait for data to be available from
one or more open files. When data arrives in the kernel from
one source, the program is awakened and notified that it can
now obtain data. It then reads the data, does the necessary
processing and returns to wait in the select system call
for more data to arrive. Armed with the select system call,
we can write a program that handles two-way communication
with a remote machine.

Terminal Characteristics

We must now think about the characteristics of terminals.
When using a regular terminal, a user types a character that’s
sent into the host machine and is echoed back to appear on
their screen. There should be minimal delay when echoing
the character (the delay is the apparent response time of the
machine). When we are connecting to the machine via a regu-
lar terminal and using command-line programs, the kernel will
do the work of echoing each character back to the screen. The
kernel hangs onto the data and handles line editing, such as
the deletion of the last character or the last word. It will wait
for the Return key to be typed before sending the completed
line of text to the user process that is waiting for the data.

However, there are several “visual applications” where the
process needs the input immediately without the Return key
being hit—the process wants the data sent one character at a
time. Also, it may turn echoing off because a single keystroke
may translate into a complex command for the editor. UNIX
has developed ways of permitting a program to take such con-
trol of terminal input and output. The UNIX terminal inter-
face is now a complicated piece of code, controlled by the
processes on the machine. Settings in the interface depend
on the application the user is using.

If we are writing a program like rlogin ~ (or telnet),
we have a choice about where character echoing can be done.
Option one is to echo the characters locally, using local kernel
processing to handle things such as character deletion. When
the user types Return, a line of clean data can be sent to the
remote machine as a single complete message. Option two is to
echo the characters from the remote machine. So when a user
types a character, it’s not echoed locally but rather sent to the
remote machine and echoed back from there. Input is usually
done one character at a time and if the network is slow, user
response time can be poor. Also, a packet is sent over the net-
work every time a user types a character, so the amount of
network traffic is much higher and the network is being
used more frequently.

24 SunExpert Magazine m December 1998

UNIX Basics

Option one works fine when the user is typing lines of in-
formation and was the method used by default in early telnet
programs that ran over very slow lines. On slow networks it
meant that the user didn't have a perceptible delay after each
character was typed. The response was fast because the local
machine was doing all the work. However, the method begins
to break down when the user is logged into a remote system
and wants to run a program such as a visual editor that norm-
ally takes control of the keyboard and screen. These programs
will execute some special system calls to configure the terminal
interface and, in general, there is no provision made to com-
municate that change of state in the terminal interface on the
remote machine to the user’s rlogin ~ or telnet program
running locally.

Because rlogin is
designed to work
over a LAN, there
are no problems
with unsatisfac-
tory response
times owing to
the passing of
single characters.
In fact, the prob-
lems of using single-character I/0O over
the Internet have diminished with time.

There’s no reason why one cannot construct a protocol that
will allow terminal interface state to be passed over the net-
work so that all terminal processing can take place locally. In
fact, the X.29 protocol, which supported terminal access over
the X.25, did permit the passing of terminal control state.
However, what happened at the terminal interface was very
operating system-specific and because X.29 was designed to
work in heterogeneous environments, it inevitably didn't sup-
port all the features needed to provide good transparent access
to a UNIX system.

It’s actually much simpler to handle all the “funny” terminal
processing on the remote machine and make the local emulator
work in one-character-at-a-time mode. This means the local
rlogin program simply has to pass each character through
in either direction as fast as it can, while all the clever stuff is
done remotely.

Because rlogin is designed to work over a local-area net-
work (LAN), which should be fast, there are no problems with
unsatisfactory response times owing to the passing of single
characters. In fact, the problems of using single-character 1/0
over the (much wider area and slower) Internet have diminish-
ed with time. Nowadays, | regularly make a 6,000-mile elec-
tronic commute from Canterbury to Berkeley and it works
fine, supplying more than adequate response time. | suppose
I should qualify that a little: It’s fine until someone on the East
Coast of the United States decides in the middle of the night
that it’s safe to reconfigure that router, at which point my line

drops out until the network reroutes itself.

If you place no intelligence about character handling in the
local program, there remains one final set of problems that are
worth mentioning. On a UNIX system, we expect to be able
to type a character and have a program die on the machine.
On most systems, typing Control-C will stop a running pro-
cess dead, so that if a program is writing reams of stuff to
your screen, it will stop and the system will become usable
again. With the rlogin ~ character-passing approach, the local
program passes your Control-C character back to the remote
host, which interprets the character as an interrupt signal and
stops your process. This approach works, but there may be
data in transit and you may get more data on the screen than
you bargained for.

OK. So we understand what's needed on the local machine,
and I'll bet that it's a more complicated story than you thought.
What about the remote machine? What do we need to run to
make things work?

The Remote Machine

Well, our first problem on the remote machine is that all the
processes that we need to run for the user are designed to talk
to terminals supported by the complex plethora of system calls
used to establish terminal state. However, we are planning to
communicate with the remote machine with network packets.
We need to find some method of changing the data from the
incoming network packets into data that appears on a system
device that behaves like a terminal. Similarly, when the user
process writes data, it will do so thinking that it’s writing to
a terminal. We want to capture that data, translate it into net-
work packets and transmit it to the locally running rlogin
process that started everything off.

I was faced with this problem in the early '80s. Our campus
plan was to connect terminals to concentrator boxes (running
on z80s for the historically minded). The concentrators would
reach out over the local area Cambridge Ring-based network
and communicate with the UNIX machine. | implemented a
terminal device driver that fed data from the network into the
regular UNIX terminal-handling code (and vice versa). User
processes would talk to some code that behaved like a terminal,
except that the data was being transmitted to the network and
onto a remote terminal rather than being passed along a serial
line to some directly connected VDU.

The folks at Berkeley took a more general approach and
wrote a special-purpose driver called a pseudo-terminal or
pseudo-tty. Each invocation of the device driver has two ends
in the file system address space: the terminal end, which
behaves like a regular terminal, and the control end, which
provides traditional UNIX data streams in both directions.

When the local rlogin connects to the remote machine,
a daemon (rlogind) is started whose first task is to find a
free pseudo-tty and initiate an appropriate login process on
the terminal end of the device. The job of rlogind s to sit
in a loop waiting for data from the network and stuffing it
down the control end of the pseudo-tty. It also waits for mess-
ages from the control end (actually output from the user pro-
cess to its terminal) and sends them over the network to the

26 SunExpert Magazine m December 1998

UNIX Basics

local machine. By the way, | am trying to retain consistencyhere.
For clarity: The local machine is the machine on which the user
is typing and the remote machine is running rlogind

Actually, the mechanism is fairly inefficient. Data from the
user’s keyboard goes into the local kernel and passes across the
system call interface into the local rlogin ~ program. The data
is immediately parcelled up and sent back across the system
call interface and out onto the network. Each data packet
arrives in the kernel of the remote machine, where it passes
across the system call interface into rlogind , which in turn
immediately passes it back into the control end of the pseudo-
tty. It then travels across a system call interface once more and
finds itself in the user’s process. Of course, the user’s process
will immediately reply with some information that is sent
back along the tortuous route to the user. We've all got enough
CPU power now and don't really notice all this data yo-yoing
around between user processes and the kernel. Back when |
was designing my system, | didn't want to take this approach
because | was trying to support in excess of 50 simultaneous
users on a 1-MIP VAX11/780 and the possible load was a
big concern.

Nevertheless, the general-purpose nature of the pseudo-tty
interface was and is a win. It is useful for other programs that
wish to start user processes. For example, my preferred editor,
JOVE, uses a pseudo-tty to implement a command that runs
a user shell in an editor window.

Telnet

As | said at the top of the article, rlogin ~ was not supposed
to have endured as long as it has. It should have been replaced
by telnet . The replacement hasn't happened. People still
use rlogin . The issue is probably one of convenience. The
telnet command is designed to support heterogeneous
machines and, therefore, is not as well tailored to the UNIX-
to-UNIX login application. UNIX has always wanted to know
the type of its terminals so that it can adapt visual programs to
send the correct control sequences to effect cursor addressing
on the target screen. When rlogin ~ connects to a remote
machine it sends the terminal type in a secret prologue so the
remote machine can set things up for you. Of course, telnet
doesn't have this mechanism and so you need to establish the
terminal type to enable visual editors to work properly.

The rlogin program is also supported by an ad hoc auth-
entication system that permits automatic login to the remote
machine without needing to supply a user name and password.

When you login, your identity depends on the name of the local

machine, determined by reverse lookup from your IP address to
a machine name (it also depends on the user name on the local
machine that is passed in the secret prologue).

Originally, the integrity of the authentication system
depended ultimately on the fact that rlogin ~ connected to
the remote machine from a “privileged port number,” a port
number less than 1,024. Recall that a TCP/IP stream con-
nects to an interface that has an IP address and a port on that
interface. In a UNIX-only world, it was possible to stop users

from creating communication paths using the set of privileged

ports, however, once the PC gained networking code all this

false security went away.

Current security wisdom states that you should not run
rlogin over the Internet because it’s too easy to break its
weak security. In fact, | have a set of filters on my router that
prevents anyone outside my network from using rlogin to
access an internal machine.

The convenience and speed of rlogin can be regained by
augmenting the somewhat weak, old system with Kerberos. |
tend to use ssh these days when connecting over the Internet
so that the whole communication is encrypted, protecting my
passwords against packet sniffers and other systems used by
the bad guys.

PS. I've since discovered from reading Wired magazine that
Cringlely’s series is called “Nerds 2.0.1: A Brief History of the
Internet” on your side of the Atlantic. Why there should be
a name change as the tapes travel over water is beyond any
reasoning. | am sure that we would understand “Nerds,” and
I cannot believe that “Geeks” would not have worked for an
American audience. Perhaps TV programs need longer names
in North America to stand out in the TV listings books, which
are generally physically smaller than ours. Who knows. ©

Peter Collinson runs his own UNIX consultancy, dedicated to
earning enough money to allow him to pursue his own interests:
doing whatever, whenever, wherever... He writes, teaches, con-
sults and programs using Solaris running on a SPARCstation 2.
Email: pc@cpg.com.

SunExpert Magazine m December 1998 27

	The rlogin Program
	rlogin
	Terminal Characteristics
	The Remote Machine
	Telnet

