
UNIX Basics
by Peter Collinson, Hillside Systems

28 SW Expert ■ May 2000

ST
EP

HE
N

SC
HI

LD
BA

CH

Over
TT he main content of this article

is shamelessly stolen from The
UNIX Programming Environ-

ment by Brian Kernighan and Rob Pike.
Written in 1984, this book remains one
of the seminal books on UNIX program-
ming. The book has several gems that
can enhance your use of the system. Back
in 1985, I typed in one of the scripts and
I have been using it ever since. Of course,
I had to type it in, there was no Internet
back then and CD-ROMs for computer
use hadn’t been invented. There are just
so many things we take for granted as
time progresses.

Let’s start with the basic problem that
the script solves. If you’ve typed com-
mands into a shell, then you probably
know that you can redirect the output of
a command or command pipeline to a
file using the > syntax. The command

$ sort -r /usr/dict/words > \

reverse

will sort the list of words into reverse

order and capture the output in a file
called reverse. The line was split for
printing; I’ve inserted a backslash to
maintain the shell syntax. The root of
the problem I am examining occurs
directly as a result of the way that redi-
rection works. Essentially, when execut-
ing the line above, the shell creates the
output file reverse before it invokes
the sort command. The shell alters the
standard output channel of the sort
command, pointing it at the newly
created file. The sort command needs
to take no special action to generate the
output in the file, it just writes data.
The shell has arranged that its standard
output channel is pointing at the file,
and the data will be written there.

For most usage, all this works well.
There are often situations, however,
where you want to perform a transfor-
mation on a file, and place the data
back into the original file. So we want
to say something like the following:

$ sort reverse > reverse

This is an instant disaster because the
shell creates the output file reverse
before it calls the command that’s intend-
ed to sort it. The act of creating a new file
will delete its contents, so the redirection
will throw away the previous data in
reverse. The command runs–the sort
command has an easy time of sorting a
zero-length file–and the result is, you
guessed it, an empty file. We have waved
goodbye to all the data in reverse. If
we are not aware of what is happening,
we probably blame the sort command
for losing our data, when we’ve expressly
destroyed it by using the redirection sys-
tem in the shell.

The simple, and ultimately tedious,
way out of the problem is to use a temp-
orary file:

$ sort reverse > L

$ mv L reverse

Temporary files are a pain, because they
are litter. Humans are great at dropping
litter all over the planet and its environs.

UNIX Basics
Your file systems are also probably full of junk files you created at
some time for some purpose and now you cannot remember
whether you need them or not. Mine are.

One common strategy is to always put junk files into /tmp.
The directory exists for this purpose and is generally cleared
automatically when the system is booted. However, on a shared
system, someone else might already have a file called L in /tmp
and this will get in the way of what you want to do. If it’s writ-
able by you, then you will destroy the old contents, which may
not be a social act. If you cannot write to it, then you’ll get
‘‘Permission denied” and have to think of a new temporary
name. Generally, if you use /tmp, you need to worry about file
name usage in the directory.

Some sites have adopted other strategies for removing litter.
On one of the sites I ran, we automatically deleted all files start-
ing with a comma every night, and encouraged the users to
create junk file names that started with a comma. This was par-
tially successful. I’ve personally always used L, and so whenever
I find a file called L lying around the system, I know I can delete
it. This again partially works until I need several temporary files.

Anyway, wouldn’t it be nice if there was some way of
enabling an arbitrary command to overwrite one of its input
files, without having to worry about naming the temporary
file? One of the scripts in The UNIX Programming Environ-
ment is designed to provide a solution to this problem. It’s
called overwrite, which is far too much for me to type,
so I’ve always called it over.

What follows builds up to a Bourne shell script. If you are
running on a publicly available UNIX, then please beware of
using the Bourne Shell clone programs. Many of the available
clones don’t copy the action of the shell exactly. If in doubt, use
bash instead of sh on your system. Actually, bash doesn’t clone
exactly either, but it’s close, and for the purpose of this article, it
will work.

Thinking About the Problem
The first stab at a solution to the problem makes use of

UNIX pipes. Rather than using the redirect shell facilities to
create the output file, we make a new command that does the
job for us:

sort reverse | over reverse

The sort command will work as before, but this time its
output is sent down a pipe into a new command, over. The
over command is given an argument, which is the file name
to be used for output storage. The command cannot create the
output file until it has received all the input from the pipe. Its
fundamental job is to read data from its standard input and
stash it somewhere (perhaps on /tmp). When it gets an end-
of-file indicator on its standard input, it will move all the cap-
tured data from the temporary storage location to the file
named by its argument.

When you are writing a script that is likely to be part of
your working environment, it’s a good idea to consider what
error management is needed. It’s inevitable that one day you
will forget the assumptions that were made when you created

the script. Even if you’ve written the script, one day you will
become its idiot user. It’s important to build in safeguards that
prevent damage and problems later.

Arguments
The first point of worry is the arguments you give to the

script. I always attempt to test for the validity of arguments,
even if the script is “just for a one-off job.” I have a pet aphorism
about such tasks: “one-off jobs always happen more than once.”
Simple tests for the validity of the arguments to a script can save
much grief.

The first assumption this script makes is that it will have a
single argument that is the name of the file to be used for output.
The Bourne shell gives us a piece of magic that supplies the num-
ber of arguments to a script, $#. We can use this in a test:

if [$# != 1]

then

echo 'Usage: over filename'

exit 1

fi

There is actually a whole ton of UNIX history in the first line.
The if statement in the Bourne shell tests the success or failure
of a command. All commands return a value, and the UNIX
kernel allows the parent that started the command to obtain its
value when the command terminates. By convention, a zero
value means “success” and a non-zero value means “failure.” I’m
following the convention in the script above, when I find that
the command has been called with less than or more than one
parameter, I print an error message and call the exit command
with a parameter of 1.

Originally, when an if statement using square brackets
was run, the shell ran a command called [, which lived on
/bin and was a link to the test command. The shell knew
about this shorthand syntax and expected to find and delete
the trailing]. In the original Bourne shell, then, the if state-
ment should be written as:

if test $# != 1

But this never looked nice or felt familiar, so most shell script
authors used the square bracket syntax. (Beware of the exclama-
tion point when using bash).

Actually, in The UNIX Programming Environment, you’ll find
that the shell’s case statement is used to test the value:

case $# in

1) ;;

*) echo 'Usage: over filename'

exit 1

esac

The case statement compares the value of the variable after
case with the expressions to be found before the round brackets
in the body of the statement. If the value $# is 1, then the first
option is executed. Two adjacent semi-colons are used to indicate

30 SW Expert ■ May 2000

UNIX Basics

32 SW Expert ■ May 2000

the end of a set of commands that are executed when the case
test string is matched. In the above example, there are no com-
mands before the ;; so nothing is done, and control falls out
from case code into the next statement after it. The * matches
all other values of $#, and the error message will be printed.

As you will see later, you can place alternates for matching
before the round brackets:

case $# in

0|1) echo 'Error message'...

The echo command will be executed when $# is either 0 or 1.
The UNIX Programming Environment uses this seemingly

overcomplex statement to perform a simple test for efficiency.
At the time, all the testing for the matching in the case state-
ment was done in the shell. The if statement meant that the
shell would start a new command (the [or test command)
to obtain a result. Later, the test command and its synonym
[were built into the shell, and the efficiency reason for using
case rather than if evaporated.

Right. We’ve dealt with making sure the arguments that we
give to the program are correct. What next?

Temporary Files
Our over script needs to capture data in a temporary file

before it creates its output file. In general, it’s not a good idea
to make a script create a temporary file in the current directo-
ry, because you may not have access permission to write in
that directory. The current directory could be on read-only
media, like a CD-ROM, and we want to ensure that the
script will work, irrespective of where the user “is” in the file
system. We really want to place temporary files on /tmp, and,
as I’ve noted, we need to worry about the file names we use in
that directory.

Burning a constant temporary name into the script is not a
good idea, because we want to be able to run more than one
invocation of the script at any one time. Using a constant
name would inhibit this desire, because parallel script invoca-
tions would use the same name. We’d like to generate a name
that is likely to be unique to permit parallel running.

The name doesn’t have to be unique for all time. It only
needs to be unique while we run the script. We know that each
process has an ID number that’s guaranteed to be unique while
the process is running, and we can use this value to generate a
temporary name. The shell gives us another magic variable

that contains its process ID: $$. We can use this to generate a
temporary file name. We’ll write something like the following:

new=/tmp/overwr.$$

The $$ is replaced by the process ID of the shell that’s running
the script and that name will be unique enough.

Signals
The next problem to consider is what happens when the

user types Control-C to stop a running command. Our over
script will be in one of two states when this happens. First, it
could be getting data from its standard input and stashing it in
the temporary file. In this case, when the user types Control-
C, we’d like to be good citizens and delete the temporary file.

Second, the script could have received an end-of-file indi-
cator and be copying the data back from /tmp to the final
destination. In this case, the script will stop soon. The origi-
nal data has been processed and the output is being written
back. We want to ignore the Control-C and finish writing to
ensure data integrity.

When the user types Control-C, the terminal interface con-
verts the keystroke into a UNIX “signal” that’s sent to all the
processes attached to the terminal. When the process is next
scheduled to run, it notices the signal and in the normal case
will take the default action, which is to die. A UNIX process
can “catch” the signal, electing to take some special action
when it arrives. It can also ignore the signal. The Bourne shell
contains the trap statement that allows for both eventualities.

In our first phase, we want to catch the signal, remove the
temporary file and exit. So our script will contain something
like the following:

trap 'rm -f $new; exit 1' 1 2 15

The word trap is followed by a command sequence that is
actioned when an appropriate signal is received. We will force
the removal of the temporary file and then exit. The command
sequence is followed by a list of numbers that map onto the
actual numbers used to code the signals. Control-C generates
the “Interrupt” signal, 1; Control-Shift-Backslash usually gen-
erates the “Quit” signal, 2; and the kill command generates
the “Terminate” signal by default, 15. By default, the “Quit”
signal causes a core dump of the program, and because this is
mostly used only by programmers, it’s often turned off.

After we have created the temporary file and received the
end-of-file indicator on input, we’ll ignore signals while we
overwrite the original file, using

trap '' 1 2 15

Pulling it Together
Well, I’ve covered most of the tricky bits. There remains

one fatal flaw in the planning. I’ve said that we will use the
closure of a data stream coming down a pipe to signal the
end of input. At the end of input, we’ll move the informa-
tion that we’ve stored back into the original file. The flaw in

Burning a constant

temporary name into the

script is not a good idea,

because we want to be

able to run more than one

invocation of the script at

anyone time.

SW Expert ■ May 2000 33

UNIX Basics
the thinking is that the command that is driving the
pipe may itself fail, as in:

sed -e s/broken/ datafile | over datafile

Here, I’ve mistyped the editing command for sed, and
the command will say:

sed: command garbled: s/broken/

The over command cannot see this message because it
will be put out on the standard error channel pointing at
the terminal. The script will think the command that’s
driving it has finished and will overwrite data file with the
new contents, which will be empty. Ideally, we want the
over command to know whether or not the command
that’s driving it has succeeded before copying the data
over. The best and easiest way of determining whether
the command has finished is to run the command under
the control of over itself. Because the over script will
be the parent of the commands being run, it can obtain
and test the exit status of each command.

We need to recast our syntax to pass the command
and the file into the over script:

$ over reverse sort -r reverse

We place the command at the end of the command line because
we know there’ll be a variable number of arguments to the com-
mand. We really are now able to write the script (see Listing 1).

The first two active lines are defensive. They preserve the
user’s search PATH variable for later use and then set one that’s
local to the script. This way, we ensure that our script will run
using the standard UNIX utility set and not use any local com-
mands established by the user. We then check whether we have
more than two arguments and complain when we have zero or
one. The error message here contains the syntax 1>&2. This is
the Bourne shell way of ensuring the error output from the mes-
sage printed by echo is placed on the standard error channel.

We then pick up the final target file name from the argu-
ment list and use the shift command to leave only the com-
mand in the argument list. The shift command moves all the
arguments up the list by one, so the file name will “drop off.”
After setting up the trap call to capture any signals the user
may generate, we execute the command using the following:

if PATH=$opath "$@" > $new

We are using the general capability of the if statement to run
a command and test its returned status when the command
has finished. The command is contained in the argument list
to the script; remember that we’ve removed the output file
name from the start of the list. We invoke the command using
"$@" and precede it by a local environment setting to reset
the search path back to that of the user. You can always set an
environment variable that’s set only for that command in the
Bourne shell by placing the appropriate variable setting state-
ment before the command to be executed.

The "$@" is a little more shell magic. It ensures that a
quoted argument on the input line is passed through intact as
a single argument to the command. Basically, it means that all
the funny things the user has typed will be passed through to
the final command that’s executed, as if the user had typed the
command. So, the user types the command to be executed as
arguments to the over script. The command will be run by
the script using the user’s search path, and its output will be
captured in the temporary file.

When the command terminates, it will have either succeeded
or failed. In the case of success, signals are ignored and the tem-
porary file is copied back. The cp command is used to preserve
ownership and permission bits on the output file. For failure, we
print an error message and die with a non-zero exit status.

The over command is robust, easy to use, and, as I said at
the beginning, I’ve been using it for years. It copes well with
human error, flagging problems with input, handling the emer-
gency use of Control-C and the failure of the source command.
It’s also a good demonstration of what you need to think about
when creating shell scripts for your own use. There is good
mileage in spending the time to make scripts into robust entities.
I suspect it’s one of those things you don’t really notice until you
don’t take care to write a “good” script and are bitten.

Further Reading
The UNIX Programming Environment by Brian W. Kernighan

and Rob Pike is published by Prentice-Hall Inc., ISBN 0-13-
937681-X. ✒

Peter Collinson runs his own UNIX consultancy, dedicated to
earning enough money to allow him to pursue his own interests:
doing whatever, whenever, wherever… He writes, teaches, con-
sults and programs using Solaris running on an UltraSPARC/10.
Email: pc@cpg.com.

Listing 1. Over
#!/bin/sh
overwrite: copy standard input to output
after an EOF (from Kernighan and Pike)
opath=$PATH
PATH=/bin:/usr/bin
case $# in
0|1) echo 'Usage: over file cmd [args]' 1>&2; exit 2
esac

file=$1; shift
new=/tmp/over.$$

trap 'rm -f $new;exit 1' 1 2 15 # clean up files

if PATH=$opath "$@" > $new # collect input
then
trap '' 1 2 15 # ignore signals
cp $new $file

else
echo "over: $1 failed, $file unchanged" 1>&2
exit 1

fi

rm -f $new
exit 0

mailto:pc@cpg.com

	Over
	Thinking About the Problem
	Arguments
	Temporary Files
	Signals
	Pulling it Together
	Listing 1. Over

	Further Reading

